A Simple Semi-supervised Algorithm For Named Entity Recognition
نویسندگان
چکیده
We present a simple semi-supervised learning algorithm for named entity recognition (NER) using conditional random fields (CRFs). The algorithm is based on exploiting evidence that is independent from the features used for a classifier, which provides high-precision labels to unlabeled data. Such independent evidence is used to automatically extract highaccuracy and non-redundant data, leading to a much improved classifier at the next iteration. We show that our algorithm achieves an average improvement of 12 in recall and 4 in precision compared to the supervised algorithm. We also show that our algorithm achieves high accuracy when the training and test sets are from different domains.
منابع مشابه
A Semi-supervised Learning Approach to Arabic Named Entity Recognition
We present ASemiNER, a semisupervised algorithm for identifying Named Entities (NEs) in Arabic text. ASemiNER does not require annotated training data, or gazetteers. It also can be easily adapted to handle more than the three standard NE types (Person, Location, and Organisation). To our knowledge, our algorithm is the first study that intensively investigates the semi-supervised pattern-based...
متن کاملEffective Bilingual Constraints for Semi-Supervised Learning of Named Entity Recognizers
Most semi-supervised methods in Natural Language Processing capitalize on unannotated resources in a single language; however, information can be gained from using parallel resources in more than one language, since translations of the same utterance in different languages can help to disambiguate each other. We demonstrate a method that makes effective use of vast amounts of bilingual text (a....
متن کاملPractical Named Entity Tagging using Co-training
3] and [1] opened the possibility of using an unlabeled corpus through co-training, a semi-supervised learning algorithm, to classify named entities. Our approach to solve the problem of Korean named entity classification also adopted a co-training method called DL-CoTrain. However, we use only a part-of-speech tagger and a simple noun phrase chunker instead of a full parser to extract the cont...
متن کاملNamed-Entity Recognition in Novel Domains with External Lexical Knowledge
We investigate the adaptation of structured classifiers to new domains. In particular, the problem of using a supervised Named-Entity Recognition (NER) system on data from a different source than the training data. We present a Semi-Markov Model, trained with the perceptron algorithm, coupled with an external dictionary with the goal of improving generalization on the novel domain. Preliminary ...
متن کاملSemi-supervised Learning for Vietnamese Named Entity Recognition using Online Conditional Random Fields
We present preliminary results for the named entity recognition problem in the Vietnamese language. For this task, we build a system based on conditional random fields and address one of its challenges: how to combine labeled and unlabeled data to create a stronger system. We propose a set of features that is useful for the task and conduct experiments with different settings to show that using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009